Energy Flow in the Garden Ecosystem

Overview
4th grade students will learn about the flow of energy and matter in a garden ecosystem by playing the roles of producers, consumers and decomposers in a simulation activity; observing components of the soil food web in the garden; forensically dissecting an owl pellet to re-create a food web and an ecological pyramid from which energy flow can be calculated; and restoring balance to a garden ecosystem by removing non-native species or introducing beneficial predators to control pests.

Engaging Students
Students will participate in a simulation activity, playing the parts of organisms in an ecosystem and assigning themselves roles of producer, consumer, or decomposer. Their classmates will decide if they agree or disagree with the role selected, and argue from evidence regarding changes in classification.

Exploration
Teams of students will investigate what an owl ate by dissecting a pellet and identifying the bones, skull, and /or fur or feathers of prey inside. Students will then research what that prey animal(s) consumes, and what its prey consumes from level to level until a food chain or web can be diagrammed and labeled, including garden inhabitants. Given the formula for energy loss from one level to the next, students will calculate how much energy was present at each level of the pyramid. Students will screen garden soil to find soil organisms; observe their features; hypothesize whether they are predators or prey; and identify their place within a soil food web.

Explanation
Students will articulate which direction energy flows and how energy is lost at every level of an ecological system; and describe roles of organisms.

Environmental Stewardship
Students will select and complete a project to restore balance to an ecosystem by removing a non-native species or re-introducing a native.

Evaluation
A Lab Report and scoring rubric are provided to help assess student proficiency at diagraming and labeling a garden food web, identifying roles of organisms in an ecosystem, and accurately calculating energy at each level of an ecological pyramid.
Standards
Georgia Performance Standards in Science
S4L1. Students will describe the roles of organisms and the flow of energy within an ecosystem.
a. Identify the roles of producers, consumers, and decomposers in a community.
b. Demonstrate the flow of energy through a food web/food chain beginning with sunlight and including producers, consumers, and decomposers.

Next Generation Science Standards
NGSS.LS2 Ecosystems: Interactions, Energy and Dynamics
5.LS2.A: Interdependent Relationships in Ecosystems
The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) therefore operating as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. (5-LS2-1)

5. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases and water from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)

Background Information
• Energy Pyramids explained by Learner.org: http://www.learner.org/courses/essential/life/session7/closer5.html
• AAAS recommendations for teaching Matter and Energy in Living Systems: http://assessment.aaas.org/topics/ME/
• All things related to owls and owl pellets: http://www.putnamsscienceonline.com/owlpellets.htm
• Student Misconceptions about Energy Flow: http://www.learner.org/courses/essential/life/session7/ideas.html
• Roles in energy pyramid: sun = source of all energy; plant = producer; first level consumer / herbivore = prey; second level consumer / carnivore or omnivore = both predator and prey; third level consumer / carnivore = predator; decomposer or scavenger.

Teacher Preparation
• Assemble the supplies and materials needed for the lesson
• Make copies of the Owl Pellet Dissection Lab Report (attached)
• Make copies of the Owl Prey Bone Chart www.biologycorner.com/resources/Owl_Pellet_Bone_Chart_grid.pdf
• Print a copy of each organism card and ecosystem role sign. Cut them apart.
• Tape the ecosystem role signs to benches or chairs set up in a straight line, à la Musical Chairs.
• Provide students with access to an Internet-connected computer and one of these web sites, when they can research owl prey: http://mdc.mo.gov/discover-nature/field-guide OR http://www.enature.com/home/ OR have a classroom set of mammal field guides available.
• Print soil food web posters or hand-outs or display slide show: http://www.nrcs.usda.gov/wps/portal/nrcs/photogallery/soils/health/biology/gallery/?cid=1788&position=Promo
• Identify possible environmental stewardship projects, such as the following:
 • Installing owl boxes and nesting places: http://kidwings.com/nests-of-knowledge/11-barn-owl-conservation/
 • The Lost Ladybug Project http://www.lostladybug.org/ as an extension.
PROCEDURES FOR LESSON ACTIVITIES

Engaging Students
“It’s Lonely at the Top” Ecosystem Role Play
Students will participate in a simulation, re-creating an ecosystem model by role-playing. Students each draw a card with the name of an organism to play and assign themselves the role of producer, consumer, or decomposer. Their classmates will decide if they agree with the role selected, and argue from evidence regarding proposed changes in that role.

- Optional: Display these web pages via smartboard to clarify which organisms are herbivores, carnivores, or decomposers:
 http://www.qrg.northwestern.edu/projects/marssim/simhtml/info/whats-a-herbivore.html
- Copy and cut apart the organism and role cards provided with this lesson.
- Set up the game as specified in the directions, attaching role cards to the back of chairs arranged in a line.
- Let students select organism cards and follow directions for play. Read directions provided with role and organism cards.
- Encourage classmates to challenge the roles other students select, and argue from evidence regarding proposed changes.

Exploration
Owl Pellet Dissection and Reconstruction of the Owl’s Food Web and Energy Pyramid
- Explain that student will be science detectives, using evidence to discover what an owl ate – and what its prey ate – in order to reconstruct the owl’s real-life food web and energy pyramid.
- Pass out the Owl Pellet Bone Chart, the Owl Pellet Dissection Worksheet, and one owl pellet to each pair / team of students, along with a paper bowl, water, a bamboo skewer or forceps, and gloves (optional - pellets are sterile).
- Direct students to dissect the owl pellet, compare contents to bone chart, and determine what species the owl ate.
- Let students research the prey animal(s) found in the owl pellet and determine the diet of that prey from a field guide.
- Students should reconstruct the owl’s food chain or web to the garden (producer) level with Sun as energy source.
- After students have re-constructed the owl’s probable real-life food chain or web, show this short interactive web site to show that only 10% of energy in an organism is transferred to its consumer at the next trophic level:
- Debrief the food web and energy pyramid reconstruction activities by asking students to explain their completed Lab Reports. Assess understanding and introduce resources listed under Background Information to address misconceptions. For example, energy pyramids are always – well – pyramidal. But pyramids of numbers are not:

Soil Food Web
Students will explore the hidden soil food web by sifting soil in the garden and searching with a magnifier (hand lens) to find and identify animals; observing their characteristics and guessing whether they are predators or prey; and looking up their place in soil food web. Display or print copies of this soil food web from NRCS:
http://www.nrcs.usda.gov/Internet/FSE_MEDIA/nrcs142p2_049822.jpg

Environmental Stewardship
Students will go on a non-native worm hunt in the garden and remove any large alien, invasive worms that eat native worms and cut roots of plants OR students will release beneficial organisms like ladybugs or lacewings, who keep the pest population in the garden under control organically. Note that is advisable to release beneficial organisms at sunset so that they will be assured of spending the night in the garden and may be less likely to fly away.

Extension
If releasing beneficial insects in the garden to restore a missing element from the ecosystem, consider engaging students in the Lost Ladybug Project citizen science research activities:
http://www.lostladybug.org/ Students search for, identify, and report ladybugs found in the garden and keep an eye out for rare and threatened species.
Ladybug wrangling tips:
- Luring native ladybugs to the garden:
 http://pioneerthinking.com/gardening/luring-ladybugs-into-your-garden
- Purchase native ladybugs or lacewings from vendors such as:
 Insect Lore
 http://www.insectlore.com/
 Beneficial Insectary
 http://www.insectary.com/, or
 BioBest
 http://www.biobest.be/home/3
- Handling ladybugs: chill live ladybugs in the refrigerator (not freezer) to slow them down enough for observation

Another possible project- install owl nesting boxes:
http://kidwings.com/nests-of-knowledge/11-barn-owl-conservation/
Owl Pellet Dissection Lab Report

Name: __________________________

Pellet Length: ________
Pellet Width: ________

How many of the following bones did you find?

- Humerus: ________
- Femur: ________
- Lower Jaw: ________
- Skull: ________
- Vertebrae: ________
- Shoulder Blade: ________
- Ulna/Radius: ________
- Ribs: ________
- Pelvic Bones: ________
- Tibia/Fibia: ________

How many animals did this owl recently eat? __

Why do you think so? What is your evidence? __

What prey species did this owl eat? __
Why do you think so?

Where do you think this owl was hunting?___
Why do you think so?

What species of owl made this pellet?___
Why do you think so?

Draw a food web for this owl, based on the bones you discovered in its pellet.
- Add other organisms to the food web based on research to determine what the owl’s prey typically eats.
- Continue backwards to include producers and the sun.
- Be sure that arrows showing energy flow between organisms point from the lower level (eaten) towards the upper level (eater)
- Include at least one garden plant or animal in this food web.
Ecological Pyramid

- Draw an ecological pyramid with the owl as third order consumer and its prey (discovered during pellet dissection) as a second order consumer. Add the other levels of organisms from the food web you drew. Be sure to include plants from the school garden in your pyramid.
- Assuming the solar energy reaching the garden is 72,000,000 kcal/m²/year, calculate the amount of energy available at each trophic level if only 10% of energy flows from one level up to the next. (Shortcut: remove the last zero from a number to get an amount that is 10%).
- Remember to include producers from the garden in your ecological pyramid!
Ecosystem Role Cards for "It's Lonely at the Top" Game

- Print out the Ecosystem Role Cards and Organism Cards and cut apart / make additional copies if necessary
- Arrange chairs in a line and tape Ecosystem Role Cards to seat backs
- Let students draw Organism cards
- Start the music (or hum) and have everyone walk around the chairs in the same direction. When they music stops, students sit on a chair with the correct Role card for their Organism
- Have students tell which Organism they are, and let the class decide if they are in the right Role. Students who challenge another student’s choice of role should argue from evidence to convince the class of a different role.
- Collect Organism cards, shuffle, pass them out again, and play next round with one less chair
<table>
<thead>
<tr>
<th>Level</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>2nd</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>2nd</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>2nd</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>2nd</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>TERTIARY</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>TERTIARY</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>TERTIARY</td>
<td>CONSUMER</td>
</tr>
<tr>
<td></td>
<td>DECOMPOSER</td>
</tr>
<tr>
<td></td>
<td>DECOMPOSER</td>
</tr>
<tr>
<td></td>
<td>DECOMPOSER</td>
</tr>
<tr>
<td></td>
<td>DECOMPOSER</td>
</tr>
<tr>
<td></td>
<td>SCAVENGER</td>
</tr>
<tr>
<td>BLACKBERRY BUSH</td>
<td>SNAKE</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ROBIN</td>
<td>HUMAN</td>
</tr>
<tr>
<td>TRUMPET VINE</td>
<td>STRAWBERRY PLANT</td>
</tr>
<tr>
<td>FROG</td>
<td>SALAMANDER</td>
</tr>
<tr>
<td>FISH</td>
<td>KELP</td>
</tr>
<tr>
<td>SHARK</td>
<td>WHALE</td>
</tr>
<tr>
<td>ALLIGATOR</td>
<td>SEAGULL</td>
</tr>
<tr>
<td>RABBIT</td>
<td>FOX</td>
</tr>
<tr>
<td>BEAVER</td>
<td>PENGUIN</td>
</tr>
<tr>
<td>COW</td>
<td>ELK</td>
</tr>
<tr>
<td>CORN</td>
<td>BUTTERFLY</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>GRASS</td>
<td>MOSS</td>
</tr>
<tr>
<td>OAK TREE</td>
<td>MILKWEED</td>
</tr>
<tr>
<td>KUDZU</td>
<td>DOGWOOD TREE</td>
</tr>
<tr>
<td>PUMPKIN PLANT</td>
<td>LIVERWORT</td>
</tr>
<tr>
<td>BROCCOLI PLANT</td>
<td>CARROT PLANT</td>
</tr>
<tr>
<td>JOE PYE WEED</td>
<td>WHEAT</td>
</tr>
<tr>
<td>HONEYSUCKLE VINE</td>
<td>BEE</td>
</tr>
<tr>
<td>DEER</td>
<td>OWL</td>
</tr>
<tr>
<td>SPIDER</td>
<td>FIELD MOUSE</td>
</tr>
<tr>
<td>SQUIRREL</td>
<td>CHIPMUNK</td>
</tr>
<tr>
<td>FERN</td>
<td>CRABAPPLE TREE</td>
</tr>
<tr>
<td>WORM</td>
<td>PILL BUG</td>
</tr>
<tr>
<td>BACTERIA</td>
<td>VULTURE</td>
</tr>
<tr>
<td>FUNGUS</td>
<td>MUSHROOM</td>
</tr>
</tbody>
</table>
Assessment for Energy Flow in the Garden Ecosystem

<table>
<thead>
<tr>
<th>Level of Mastery</th>
<th>Emerging</th>
<th>Competent</th>
<th>Proficient</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark or</td>
<td>Not yet proficient</td>
<td>Partially proficient</td>
<td>Mastered task</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1 point</td>
<td>4 points</td>
<td>5 points</td>
<td>Points</td>
</tr>
<tr>
<td>Measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ecosystem role-	n/a	n/a	Participated	
playing				
simulation				

Owl pellet dissection
- Dissected owl pellet
- Dissected owl pellet, determined prey from bones, attempted food chain reconstruction with some flaws or lack of labels and arrows.
- Dissected owl pellet, determined owl prey, researched prey animal’s diet, reconstructed owl food web to producer level, sketched and labeled food chain on lab report with arrows pointing from producer level to consumer level, etc.

Owl energy (ecological) pyramid
- Pyramid drawn correctly but calculations unsuccessful.
- Pyramid drawn correctly but energy calculated incorrectly at some levels or direction of energy flow incorrect.
- Calculate the energy loss at every level of the pyramid, from sun to tertiary consumer and label these levels on a correctly drawn ecological pyramid, with arrows pointing from producer level upwards.

Soil food web investigation
- Sifted soil, did not identify creatures or discover their place in food web
- Sifted soil and investigate creatures living in the garden; observed characteristics; did not predict whether predator or prey or find an organism’s place in soil food web.
- Sifted soil and investigate creatures living in the garden; observed characteristics; guessed whether predator or prey; found their place in soil food web.

Environmental Stewardship
- Engaged in activity but unable to articulate how it helps the earth
- Removed invasive, non-native worms or plants from the garden OR released beneficial insects such as ladybugs or lacewings; explained benefit of work without referencing ecosystem
- Removed invasive, non-native worms or plants from the garden OR released beneficial insects such as ladybugs or lacewings; articulated how this helps the Earth by restoring ecosystem balance.